Švedski dnevni časopis Dagens Nyheter je objavil reportažo o uporabi umetne inteligence in prepovedanih aplikacij. Med aplikacijami, ki jih mladi uporabljajo za goljufanje pri testih iz matematike, se je znašel tudi hrvaški Photomath. Gre za aplikacijo, ki jo je leta 2014 skupaj s sodelavci razvil hrvaški podjetnik Damir Sabol, poroča Index.hr.
Sabol je aplikacijo prvič predstavil na tehnološki konferenci TechCrunch Disrupt Europe oktobra 2014 v Londonu. Photomath je že prvi dan preneslo več kot 100.000 uporabnikov, po enem mesecu pa jih je bilo že 8,5 milijona.
Medtem se je na trgu pojavilo na desetine podobnih aplikacij, kot sta MathGPT ali WolframAlpha, vendar Photomath ostaja najpopularnejši in edini povsem brezplačen. Ocenjuje se, da je bil Photomath do zdaj prenesen med 400- in 500-milijonkrat. Sabol je za hrvaške medije pojasnil, da se je dolgo odločal, ali naj bo aplikacija brezplačna ali naj stane en dolar. Na koncu so se odločili za brezplačno različico, kar se je izkazalo za zadetek v polno.
A aplikacija ponuja preveč pametne rešitve
Med več kot 700.000 ocenami v ameriški trgovini App Store ima Photomath danes povprečno oceno 4,8, kar velja za odlično. Po drugi strani pa učiteljem matematike po vsem svetu Sabolova aplikacija še danes predstavlja izziv pri odkrivanju goljufanja.
"Nenehno odkrivam nove prevare pri matematičnih testih, praviloma gre za aplikacije na pametnih telefonih. Težko ocenim, koliko goljufij odkrijem, a rekel bi, da mi jih približno četrtina uide," je za Dagens Nyheter povedal učitelj matematike Sebastian Fransson, ki je sodeloval v reportaži o švedskih srednješolcih.
Z uporabniškega vidika je edina težava s Photomathom, kot trdijo švedski dijaki, ta, da pogosto ponudi preveč pametne rešitve. "Preizkusila sem Photomath, vendar aplikacija ponuja rešitve na ravni fakultete, zato se takoj vidi, da tega nismo mogli rešiti sami," pravi dijakinja zadnjega letnika gimnazije iz Švedske Vanessa Söderström.
To potrjuje tudi učitelj Fransson: "Uporabo Photomatha in podobnih aplikacij je najlažje odkriti, ko dijak pride do rešitve, ki je brez tehnološke pomoči ni mogoče izračunati. Ali pa ko uporabi postopek, ki se sploh ne poučuje v gimnazijskem kurikulumu. V takšnih primerih test razveljavimo."


